
ACDC - A Helping Hand

Akash Jinandra, Carlos Cuesta, Devin Defond,

Chang Ching Wu

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — This paper presents the design methodology
utilized to realize the telerobotic arm that was designed by
Group A. One user wears an exoskeleton with sensors on
each finger, elbow, shoulder and forearm. It transmits the
data to a robotic arm that mimics the movement of the user.
This paper is broken into the following sections: (1)
mechanical construction, (2) embedded processing, (3)
power distribution, (4) communication and (5) software
controls. This paper discusses the implementation of both
the hardware and software. The primary task of the system
is to mimic the user as closely as possible.

Index Terms — Atmega328P, Bluetooth Communication,
tele-presence robotics, safety.

I. INTRODUCTION

 There are many environments. The motivation of the

project came from watching the movie surrogate. We

noticed that the surrogate robot can go through many

hazardous conditions and environments that humans

cannot. Obviously we do not have the technical

knowledge and resources to create these full scale robots

with that much detail. What if instead we could control

the robots with our actual movements instead of using a

joystick or controller? Also we could not make a full

scale robot let alone control it during our 1 semester

building phase of senior design. So we thought of the

minimum viable product that would be the most useful.

We settled on a robotic arm. This is arguable one of the

most useful parts of the human body, the dexterity of 5

fingers and the four degrees of freedom of a whole arm.

We decided the control will have a form factor similar to

a sleeve, which will contain sensors on each finger, wrist,

and major joint of the arm. The finger sensors will be

using accurate flex sensors that change resistance as the

finger flexes. The sensors will also be used on the elbow

as well as the palm and the wrist. These sensors will add

gripping capability. Gyroscope sensor is what we plan to

use on the wrist to add degrees of freedom. All of these

sensors will be sewn into a fabric glove. The sensors will

be wire onto a microcontroller, MCU, such as Arduino or

a MSP430 board. We are still deciding whether the

communication will be local or will be over the internet

 The Arm itself will be mounted on a table from the

elbow. It will be able to move up and down and rotate

360 degrees horizontally. We plan to use six micro-servo

motors for the fingers and the pisiform, to give each

fingers and the pisiform the ability to open and close with

the similar dexterity as an animatronics' hand. Two

standard-servo motors will be use to give the palm of the

hand the ability to fold up and down and swing left to

right, by pushing/ pulling moment arm attached to the

wrist at different combinations. For the elbow, we plan on

using a stepper motor for the beneficial factor of high

torque and higher precision of micro-stepping. But, since

there is no feedback for a stepper motor, a feedback

sensor, hall-effect encoder, should be attached to the

rotary axis of the elbow to allow accurate measurement

for feedback.

 The applications of this project are limitless. We can

attach this arm to a robot and use it for bomb disposal.

The bomb technician will not have to learn a new system

and can use his instincts without hesitation. We can also

use it in a situation where there is radiation and our arm

has to operate things that humans usually operate, such as

controls, switches. A more domesticated version of this

would be mounted on a desk. This can be used for

support for IT. For instance, an elderly person who can’t

type for themselves, or don’t know where to click the

mouse. Or maybe helping engineers with circuits, if they

don’t know how to connect something properly, a

seasoned engineer can help them with ease.

II. EXOSKELETON

The exoskeleton is a key part of the project that is

needed to capture the motion of the user that is trying to

do the task. The design for the exoskeleton was found

online and was made by Alex Czech. The original design

included joints for both arms with rotating points at the

each finger, elbow, and shoulder. This design had to be

modified to allow for this project’s specific application.

For instance, this project only required only one arm.

Also with the previous design, it was very difficult to

capture shoulder movement due to the original joint being

a ball joint. Mounting a sensor would be very difficult. To

fix this, the elbow joint from the second arm replaced the

shoulder ball joint. The connection from the hand and

wrist was also disconnected to allow for wrist rotation.

With the new design it was possible to capture rotation

from both the elbow, shoulder, fingers, wrist and forearm.

The method of capturing the motion or each joint was

done in two ways. For the fingers rotary potentiometers

were used, as a high resolution was not needed for this,

because the hand that was given to the team did not have

that high of a resolution. For the elbow and shoulder

joints, 4000 step quadrature encoders were used. These

are the same encoders that are used in each motor that is

inside the arm. To capture motion effectively, a

potentiometer was mounted to each knuckle on each

finger, and the encoders were mounted to both the elbow

and shoulder joint. A picture of the motion capture

exoskeleton is seen in Fig. 1.

Fig. 1 Exoskeleton

III. HARDWARE

In this section two different aspect of hardware in

regard to this project will be discussed. These aspect will

be parted into subsection A, which goes over the

mechanical hardware, and subsection B, which goes over

the electronic hardware.

A. Mechanical Hardware

 The mechanical hardware of this system is constructed

and provided to this project by HP. The mechanical arm

has capability of 5 degrees of freedom, DOF, not

counting the end effector. The shoulder joint have 2

degrees of freedom, rotation on the y-axis and z-axis in

relation to the mounting stand. The elbow have 1 degree

of freedom, rotation on the parallel axis to the shoulder.

The forearm have 1 degree of freedom, rotation on the

perpendicular axis to the rotation plane of elbow. The

wrist have 1 degree of freedom, rotation on the

perpendicular axis to the rotation plane of forearm.

Although, the mechanical arm is capable of 5 degrees of

freedom, only 4 degrees of freedom is utilize to realize

the objective. The rotation on the z-axis of the shoulder

would be disregarded.

 Each degree of freedom is achieved through the usage

of 24V DC motor equipped with corresponding reduction

gear. The reduction gear set is different for each degrees

of freedom due to the dynamic aspect of the mechanical

arm, some degrees of freedom would need to output more

torque than others. For example, the degree of freedom on

the shoulder responsible for the rotation in the y-axis is

capable and required to output more torque in order to

manipulate the links and end effector.

The position of each degree of freedom is tracked

through the usage of rotary encoder sensor. For each

degree of freedom, there is an integrated rotary encoder

mounted on the rear shaft of the DC motor. The position

of each degree of freedom is interpolated through the

processing of rotary encoder data by the electronic

system.

 The end effector of the arm is a 3D printed hand with

individual movement capability for each of its fingers and

thumb as shown in Fig. 2. Each finger is manipulated by a

micro metal gear servo with metal braided wire. The

thumb is manipulated by a standard servo and metal

braided wire.

Fig. 2 Mechanical Hand

B. Electronic Hardware

 The electronic hardware of this system is divided into

two separate systems: the sensor sleeve side houses one

of the embedded electronic system. While the mechanical

arm side houses the other embedded electronic system.

Both embedded electronic system is equipped with a

USB-to-Serial interface which enable the capability of

updating code and debugging each system. A main

microcontroller unit which process the corresponding

data on board the embedded system can be found on both

sides. Along with several sub-level microcontroller unit

dedicated to processing position data and or control, as

shown in Fig 3.

Fig. 3 USB-Serial MCU

Implemented on the Sensor Sleeve side is a

communication block, a microcontroller handling the

overall processing, and two additional microcontrollers

interpreting the two rotary encoders. The main processing

block tracks position of user’s fingers, forearm, elbow,

and shoulder. The two interpreting block process the

rotary encoder sensor data and send the processed data to

the main microcontroller. The overall schematic of the

Sensor Sleeve side is shown in Fig. 4, while the printed

circuit board layout is shown in Fig. 5.

Fig. 4 Exoskeleton Embedded Hardware Schematic

Fig. 5 Exoskeleton Embedded Hardware PCB

Implemented on the Mechanical Arm side is a

communication block, a microcontroller handling the

overall processing, and 4 additional microcontroller

handling the 4 degrees of freedom. The main processing

block handles the position data from the Sensor Sleeve

side and send to the corresponding reaction network. The

reaction network are shoulder processing block, elbow

processing block, forearm processing block, and wrist

processing block. Each processing block forms a

feedback loop using the rotary encoder sensor data and

motor driver. The overall schematic of the Mechanical

Arm side is shown in Fig. 6, while the printed circuit

board layout is shown in Fig. 7.

Fig. 6 Arm Processing Schematic

Fig. 7 Arm Embedded Hardware PCB

IV. COMMUNICATION

The nature of the project, A Helping Hand, is to allow

3D printed exoskeleton arm to wirelessly connect to a

robotic arm, and then to have said robotic arm mimic the

movements of the exoskeleton. Due to the need for a

wireless connection, it was necessary to find a wireless

communication standard that would best fit the needs of

this project. After much research between many different

standards (Wi-Fi, Bluetooth, Sub-Ghz, etc.) it was found

that Bluetooth would be the communication standard that

most aligns with the project’s needs. The reason for

choosing Bluetooth was due to the ease of

implementation, the low cost, and the speed that

Bluetooth provides.

The Bluetooth device that is being used is the HC-05

and HC-06 Bluetooth modules. The reason for the two

different parts is due to the way how these Bluetooth

modules work. In order for the modules to connect and

then begin sending data over wirelessly, it needs to be set

up in a way that there is both a Slave module and a

Master module. The HC-06 is the slave and the HC-05 is

the master. The master module is attached to the robotic

arm, waiting to receive the data being sent from the slave

module (which is attached to the exoskeleton), and then

the data that was received will be processed by the

microcontroller and then delivered to the required motors

in order to move the arm.

Now for the code that operates the communication

system for A Helping Hand. From what was stated

previously, the master module is on the robotic arm and

the slave module is attached to the exoskeleton, because

of this the slave module will be the one that will be

receiving all the measured data from the user’s inputs and

then transmitting that to the master module so that data

can be processed and then used for the robotic arm to

mimic. In order to do this, an integer array was

constructed to host all of the user’s inputted movement;

however, this did not work during the initial test runs.

The reason for it not working was found to be caused by

the way that the Bluetooth modules were transmitting the

data. The HC-05 and the HC-06 transmits data as a single

byte, a byte is composed of 8 bits, and with only 8 bits to

work with the largest number that was being transmitted

was 255. This was unacceptable due to how it will impact

accuracy (the potentiometers can go up to 1024

resolutions, thus there would be a 75% drop in resolution,

the encoders can go up to 4000 resolutions which would

be a massive 93.75% drop in total accuracy).

The solution to this problem was to find a way to

transmit the recorded integer values (an integer is 2 bytes)

in a form of two separate bytes. The first step was to

create a byte array that would have a buffer size that is

twice the size of all recorded integer values. After the

creation of this byte array, what was then needed was to

find a way to break down the integer values into 2 bytes

each. Thankfully, Arduino has a command that can

capture the first 8 bits (which are consider the high

bits/byte) and the lower 8 bits (which are consider the low

bits/byte). After capturing both the high and low bytes,

both bytes would be recorded in numerical order within

the byte array. This byte array would then be transmitted

from the slave module to the master module for

processing.

Once the byte array was transferred from the slave

module to the master module, it was time to decrypt the

byte array into an actual integer value. The equation used

in order to recreate the original integer value is (1)

int value = highByte*256+lowByte. (1)

The reason behind multiplying the high byte by 256 is

to tell the microprocessor that the first byte is to be

shifted to the left by 8 bits which would then allow the

high byte to actually represent its intended value. After

adding both the high and low bytes together, the sum will

be equivalent to the original recorded value. Once all the

integer values have been recalculated, the master will

then take these calculated values and send it to all of the

servos, which will then cause the robotic arm to move.

This process has a visual representation found in Fig 8.

Fig. 8 Communication Block Diagram

V. POWER PROCESSING SYSTEM

Powering all of our electronics is essential for this

project to work. This project requires a reliable power

source that provides continuous power to supply the

correct voltages and currents to the other system

components. There are two aspects of power to this

project, the power being provided and the power being

processed, which is our power supply system. The power

being provided is being supplied from a commercial

power supply given to us by HP, which outputs 24VDC.

Our power supply system can be broken into two

sections: the low power exoskeleton and high power arm

subsystems.

A. Exoskeleton Subsystem

The Exoskeleton power processing subsystem will

provide continuous power to the exoskeleton components,

which include the microcontrollers receiving sensory

data, the encoders recording arm movement, the

potentiometers recording finger movement, the gyro

recording wrist movement, and Bluetooth module

providing information via the microcontrollers to the Arm

subsystem. Of the aforementioned subsystem

components, all will be provided 5V power, with the gyro

being the exception, which will be provided 3.3V. The

total current carried by this subsystem will be less than

100mA, making this subsystem under 0.5W.

The Exoskeleton power subsystem will accomplish its

goal using DC to DC linear regulators due to their

simplicity to design. To efficiently provide power, and to

reduce strain on components, three DC to DC regulators

will be used. Instead of dropping the voltage from the

given power supply to the voltage needed, the power will

be distributed in stage to efficiently provide power. One

DC to DC regulator to drop the voltage from the given

24V to 12V (strain relief stage), another to drop the

voltage from 12V to 5V (5V output), and a third to drop

the voltage from 5V to 3.3V (3.3V output). Fig. 9 shows

the schematic for the exoskeleton power subsystem.

Fig. 9 Exoskeleton Power Schematic

Due to the nature of the exoskeleton being worn by a

human user, all electronics needs to be compact and small

enough to wear without putting a burden on the user.

Designing and creating a Printed Circuit Board (PCB) is

of critical importance as it allows an easy and light

solution not having a breadboard be configured onto the

exoskeleton, which compared to a PCB would be bulky

and troublesome. One of the PCBs for the exoskeleton

was created to house the power processing circuits, which

is shown in Fig. 10. Vias were put in place around the

perimeter of the board and one in the center of the board

as the board does not use the bottom layer for signal

tracing. This allows the bottom layer to be used solely as

a ground plane for assistance in heat dissipation of the

components, as linear DC to DC regulators can heat up

easily.

Fig. 10 Exoskeleton Power PCB

B. Arm Subsystem

The Arm power processing subsystem will provide

continuous power the arm components, which will

include the microcontrollers that are controlling the arm’s

movements via information received via Bluetooth, the

Bluetooth module receiving information from the

exoskeleton, and the fingers of the mechanical hand. Of

the aforementioned components, the Bluetooth module

and the microcontrollers will be fed 5V from the power

supply at approximately 50mA, while the fingers will be

fed 6V at approximately less than 1A each. The fingers

are what classifies this subsystem as high power as the

relative wattage of this subsystem is much higher than

that of the exoskeleton approximately 30W.

The Arm power subsystem will accomplish its goal of

providing so much power to the mechanical fingers and

mechanical control using DC to DC linear regulators due

to their simplicity; unlike the exoskeleton, this subsystem

needs to take heat dissipation into much higher

consideration, which will be discussed further. Much like

the exoskeleton, the power processing will be done in

stages to provide less strain on the components, with one

stage dropping the provided 24V from the given power

supply to 12V. Another stage will be used to drop the

voltage from 12V to 5V to provide power to the

embedded hardware, while a parallel stage will be used

for the fingers, dropping the voltage from 12V to 6V. Fig.

11 shows the schematic for the arm power subsystem.

Fig. 11 Arm Power Schematic

When it comes to the design and creation of the PCB

for the arm subsystem, heat dissipation is a heavy factor

as servos with high loading requirements are being used.

Providing 1A to each finger will prove to be a strain for

the components which have to have the face the burden of

the wattage being dissipation across it in the form of

losses. To deal with this, large copper planes with the

intent to help with heat dissipation were designed as per

datasheet recommendations of each regulator used. These

large power planes can be used when a heatsink is not

ideal in the design process. Many thermal vias were

created as well to assist in heat dissipation, as they help

take the stress of the components by displacing the heat

energy away from the component itself. Fig. 12 shows the

PCB design for the Arm subsystem.

Fig. 12 Arm Power PCB

VI. SOFTWARE CONTROLS

Much like other areas of the project, the software

controls are essential for this project to work. The

software controls for this project mirrors the processor

architecture. This means like the processors, the software

is broken up into multiple parts, with different software

subsystems in both the exoskeleton and arm systems. For

each microcontroller on each PCB there is a separate

program that needs to run. The software controls

architecture deals with all of the following:

intercommunication between MCU’s, communication

between arm and exoskeleton systems, motor controls for

arm joints, and data manipulation for everything in

between.

A. Exoskeleton Subsystem

 For the controls board for the exoskeleton there are 3

processing microcontrollers. Two that deal with the

encoders for the shoulder and elbow and one main MCU

that handles all data inputs and then packages it up to be

sent to the arm system. As mentioned in the processing

section the reason for having an MCU dedicated to each

encoder is due the fact that the MCU’s only have 2

interrupt pins. These pins are needed as the MCU can’t

keep up with encoder without them. There are two

encoders on the exoskeleton hence the two MCU’s for

them on the exoskeleton control board. The last MCU is

the main MCU that takes in the digital gyroscopic data for

the wrist and five analog potentiometer values for the

fingers. It also receives data from the other two

microcontrollers via I2C connections. For the

interconnections of I2C, the main MCU is the Master as it

receives the data from the two other MCU’s. The other

two MCU’s are slaves to the main MCU. It then

packages up all of the data into a 14-byte array and sends

the data through Bluetooth using the RX and TX pins.

Fig. 13 below shows the flow of how the software works.

Fig. 13 Exoskeleton Control Software Flowchart

B. Arm Subsystem

 Similar to the exoskeleton control board there are

multiple MCU’s on the arm control board. And as stated

before for each MCU there is different piece of software

that needs to be run. In this system there are 5 MCU’s,

one is the main MCU that receives the data from the

exoskeleton system. The other 4 MCU’s are servo

subsystems for each joint, these include: shoulder, elbow,

forearm and wrist. Each servo subsystem has an MCU

dedicated it for the same reason as the control board, the

MCU can only handle one encoder. This is more relevant

for the Arm board as the encoders will be moving much

faster on the arm than on the exoskeleton as they are

attached to actual motors.

 Each servo subsystem follows the basic architecture:

first it calibrates motor and starts the position at zero. It

then runs a PID algorithm. This is the key function that

allows the motor to work as a servo. As the motor is

attached to an encoder, it is possible to keep track of

position, and with the algorithm, the user can tell the

motor to go to a specific position with a certain speed.

The other key function is the receiving function, this is

used to get data from the main MCU. Once the PID

algorithm starts it gets the data from the receive function

and receives a destination value it must go to. It then

calculates the error between the desired position and

current position, this error is then multiplied by a certain

gain Kp. This value is then used to calculate a PWM and

direction value that is sent to the motor controllers that

are driving the motors. One parameter to note is the

window of values for the speed of the motors which is

represented with a PWM value. The PWM values of 0-

255 map to a speed of 0-100 percent for the motors. The

motor controller takes the PWM value converts it to the

speed percentage, and then outputs a corresponding

voltage to the motor. The PWM window has been capped

at 100 out of 255 due to the hardware limitations of the

MCU. The interrupt pins can only be triggered so fast, so

the speed is limited to allow for the MCU to keep up. To

allow for the fastest response time, the values from the

main MCU are sent to the servo subsystems every clock

cycle.

 Another item of concern is the resolution of the

encoders and keeping this as high as possible throughout

the entire architecture. To meet this requirement, the

encoder value from the exoskeleton stays the same until it

gets to the servo subsystem. Once it gets to this point, it is

mapped with the values of -4000 to 4000 to -360 to 360

degrees. This is then mapped to the arm position, by using

parameters for the motor. The motors are geared 100 to 1,

this means for every revolution of each motor the joint of

the arm moves 3.6 degrees. For instance, if the

exoskeleton moves to 90 degrees or position 1000 for the

encoder. The arm side would take the value of 90 and

divide by 3.6 yielding the value of 25. This value is

multiplied by 4000, one full revolution of the encoder to

get to the value of 100,000 steps. The PID algorithm then

sends the joint to this value yielding a position of 90

degrees.

 Similar to the exoskeleton architecture for I2C. The

main MCU is the Master, and all of the other MCU’s are

the slaves. The main MCU receives the data from the

Bluetooth device through serial, it decodes the data

package, then sends out the position to each joint. This

also includes the hand, which is controlled by a different

function but is also within the main MCU.

Fig. 14 Arm Control Software Flowchart

VII. CONCLUSION

As one can see the telerobotic arm system couldn’t be

realized without the all the aforementioned components

discussed in this paper. The mechanical hardware,

processing, communications, power systems, and

software controls are integral parts to the project. The

exoskeleton captures the user’s motion through sensors,

which is then sent to the robotic arm subsystem. The

architecture was completely designed by the authors of

the team. Through the knowledge gained from classes and

internships the team was able meet the goals and

requirement that were set by Hewlett Packard.

ACKNOWLEDGEMENT

The authors wish to acknowledge the generosity of

Hewlett Packard of Boise Idaho for loaning the team the

robotic arm for the semester. Specifically Hans

Leidenfrost, Chris Morgan, and Rich Payne. All of their

continued support made this project possible.

BIOGRAPHY

Carlos Cuesta will graduate with

both a Bachelor’s of Science in

Computer and Electrical

Engineering in December of

2016. Focusing on computer

communication, software

integration with its hardware

counterpart, and embedded

systems.

Devin Defond will graduate

with a Bachelor’s of Science

in Electrical Engineering in

December of 2016. He

currently works as a Electrical

Engineering CWEP at

Lockheed Martin doing

troubleshooting and testing.

After graduation, he aspires to

continue on with his

education with a Master’s in power electronics.

Akash Jinandra will graduate

with a Bachelor’s of Science

in both Electrical and

Computer Engineering in

December of 2016. He is the

chair of the IEEE

undergraduate student branch

at UCF. He has also done

internships at Texas

Instruments, Advanced Micro

Devices, Precision Infinity, and Hewlett Packard. He

hopes to get his Master’s degree and MBA in the future

once he’s gotten more experience in the field.

Chang Ching Wu will

graduate with a Bachelor’s

of Science in Electrical

Engineering in December

of 2016. He served as

treasurer for the UCF

student branch of IEE. He

will focus his career in

analog design, hardware

integration, and robotic

systems.

