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Abstract — This paper presents the design methodology 
utilized to realize the telerobotic arm that was designed by 
Group A. One user wears an exoskeleton with sensors on 
each finger, elbow, shoulder and forearm. It transmits the 
data to a robotic arm that mimics the movement of the user. 
This paper is broken into the following sections: (1) 
mechanical construction, (2) embedded processing, (3) 
power distribution, (4) communication and (5) software 
controls. This paper discusses the implementation of both 
the hardware and software. The primary task of the system 
is to mimic the user as closely as possible.  

Index Terms — Atmega328P, Bluetooth Communication, 
tele-presence robotics, safety. 

 

I. INTRODUCTION 

 There are many environments. The motivation of the 

project came from watching the movie surrogate. We 

noticed that the surrogate robot can go through many 

hazardous conditions and environments that humans 

cannot. Obviously we do not have the technical 

knowledge and resources to create these full scale robots 

with that much detail. What if instead we could control 

the robots with our actual movements instead of using a 

joystick or controller? Also we could not make a full 

scale robot let alone control it during our 1 semester 

building phase of senior design. So we thought of the 

minimum viable product that would be the most useful. 

We settled on a robotic arm. This is arguable one of the 

most useful parts of the human body, the dexterity of 5 

fingers and the four degrees of freedom of a whole arm. 

We decided the control will have a form factor similar to 

a sleeve, which will contain sensors on each finger, wrist, 

and major joint of the arm. The finger sensors will be 

using accurate flex sensors that change resistance as the 

finger flexes. The sensors will also be used on the elbow 

as well as the palm and the wrist. These sensors will add 

gripping capability. Gyroscope sensor is what we plan to 

use on the wrist to add degrees of freedom. All of these 

sensors will be sewn into a fabric glove. The sensors will 

be wire onto a microcontroller, MCU, such as Arduino or 

a MSP430 board. We are still deciding whether the 

communication will be local or will be over the internet 

 The Arm itself will be mounted on a table from the 

elbow. It will be able to move up and down and rotate 

360 degrees horizontally. We plan to use six micro-servo 

motors for the fingers and the pisiform, to give each 

fingers and the pisiform the ability to open and close with 

the similar dexterity as an animatronics' hand. Two 

standard-servo motors will be use to give the palm of the 

hand the ability to fold up and down and swing left to 

right, by pushing/ pulling moment arm attached to the 

wrist at different combinations. For the elbow, we plan on 

using a stepper motor for the beneficial factor of high 

torque and higher precision of micro-stepping. But, since 

there is no feedback for a stepper motor, a feedback 

sensor, hall-effect encoder, should be attached to the 

rotary axis of the elbow to allow accurate measurement 

for feedback. 

 The applications of this project are limitless. We can 

attach this arm to a robot and use it for bomb disposal. 

The bomb technician will not have to learn a new system 

and can use his instincts without hesitation. We can also 

use it in a situation where there is radiation and our arm 

has to operate things that humans usually operate, such as 

controls, switches. A more domesticated version of this 

would be mounted on a desk. This can be used for 

support for IT. For instance, an elderly person who can’t 

type for themselves, or don’t know where to click the 

mouse. Or maybe helping engineers with circuits, if they 

don’t know how to connect something properly, a 

seasoned engineer can help them with ease. 

II. EXOSKELETON 

The exoskeleton is a key part of the project that is 

needed to capture the motion of the user that is trying to 

do the task. The design for the exoskeleton was found 

online and was made by Alex Czech. The original design 

included joints for both arms with rotating points at the 

each finger, elbow, and shoulder. This design had to be 

modified to allow for this project’s specific application. 

For instance, this project only required only one arm. 

Also with the previous design, it was very difficult to 

capture shoulder movement due to the original joint being 

a ball joint. Mounting a sensor would be very difficult. To 

fix this, the elbow joint from the second arm replaced the 

shoulder ball joint. The connection from the hand and 

wrist was also disconnected to allow for wrist rotation. 



With the new design it was possible to capture rotation 

from both the elbow, shoulder, fingers, wrist and forearm. 

The method of capturing the motion or each joint was 

done in two ways. For the fingers rotary potentiometers 

were used, as a high resolution was not needed for this, 

because the hand that was given to the team did not have 

that high of a resolution. For the elbow and shoulder 

joints, 4000 step quadrature encoders were used. These 

are the same encoders that are used in each motor that is 

inside the arm. To capture motion effectively, a 

potentiometer was mounted to each knuckle on each 

finger, and the encoders were mounted to both the elbow 

and shoulder joint. A picture of the motion capture 

exoskeleton is seen in Fig. 1. 

 

 

 

Fig. 1  Exoskeleton 

III. HARDWARE 

In this section two different aspect of hardware in 

regard to this project will be discussed. These aspect will 

be parted into subsection A, which goes over the 

mechanical hardware, and subsection B, which goes over 

the electronic hardware. 

 

A. Mechanical Hardware 

 

  The mechanical hardware of this system is constructed 

and provided to this project by HP. The mechanical arm 

has capability of 5 degrees of freedom, DOF, not 

counting the end effector. The shoulder joint have 2 

degrees of freedom, rotation on the y-axis and z-axis in 

relation to the mounting stand. The elbow have 1 degree 

of freedom, rotation on the parallel axis to the shoulder. 

The forearm have 1 degree of freedom, rotation on the 

perpendicular axis to the rotation plane of elbow. The 

wrist have 1 degree of freedom, rotation on the 

perpendicular axis to the rotation plane of forearm. 

Although, the mechanical arm is capable of 5 degrees of 

freedom, only 4 degrees of freedom is utilize to realize 

the objective. The rotation on the z-axis of the shoulder 

would be disregarded. 

  Each degree of freedom is achieved through the usage 

of 24V DC motor equipped with corresponding reduction 

gear. The reduction gear set is different for each degrees 

of freedom due to the dynamic aspect of the mechanical 

arm, some degrees of freedom would need to output more 

torque than others. For example, the degree of freedom on 

the shoulder responsible for the rotation in the y-axis is 

capable and required to output more torque in order to 

manipulate the links and end effector. 

The position of each degree of freedom is tracked 

through the usage of rotary encoder sensor. For each 

degree of freedom, there is an integrated rotary encoder 

mounted on the rear shaft of the DC motor. The position 

of each degree of freedom is interpolated through the 

processing of rotary encoder data by the electronic 

system. 

  The end effector of the arm is a 3D printed hand with 

individual movement capability for each of its fingers and 

thumb as shown in Fig. 2. Each finger is manipulated by a 

micro metal gear servo with metal braided wire. The 

thumb is manipulated by a standard servo and metal 

braided wire. 

 

 

Fig. 2      Mechanical Hand 



 

B. Electronic Hardware 

 

  The electronic hardware of this system is divided into 

two separate systems: the sensor sleeve side houses one 

of the embedded electronic system. While the mechanical 

arm side houses the other embedded electronic system. 

Both embedded electronic system is equipped with a 

USB-to-Serial interface which enable the capability of 

updating code and debugging each system. A main 

microcontroller unit which process the corresponding 

data on board the embedded system can be found on both 

sides. Along with several sub-level microcontroller unit 

dedicated to processing position data and or control, as 

shown in Fig 3.  

 

 

Fig. 3      USB-Serial MCU 

 

Implemented on the Sensor Sleeve side is a 

communication block, a microcontroller handling the 

overall processing, and two additional microcontrollers 

interpreting the two rotary encoders. The main processing 

block tracks position of user’s fingers, forearm, elbow, 

and shoulder. The two interpreting block process the 

rotary encoder sensor data and send the processed data to 

the main microcontroller. The overall schematic of the 

Sensor Sleeve side is shown in Fig. 4, while the printed 

circuit board layout is shown in Fig. 5. 

 

 

 

Fig. 4      Exoskeleton Embedded Hardware Schematic 

 

 

Fig. 5      Exoskeleton Embedded Hardware PCB 

 

Implemented on the Mechanical Arm side is a 

communication block, a microcontroller handling the 

overall processing, and 4 additional microcontroller 

handling the 4 degrees of freedom. The main processing 

block handles the position data from the Sensor Sleeve 

side and send to the corresponding reaction network. The 

reaction network are shoulder processing block, elbow 

processing block, forearm processing block, and wrist 

processing block. Each processing block forms a 

feedback loop using the rotary encoder sensor data and 

motor driver. The overall schematic of the Mechanical 

Arm side is shown in Fig. 6, while the printed circuit 

board layout is shown in Fig. 7. 

 

 

 

Fig. 6      Arm Processing Schematic 

 



 

 

 

 

 

 

Fig. 7      Arm Embedded Hardware PCB 

IV. COMMUNICATION 

The nature of the project, A Helping Hand, is to allow 

3D printed exoskeleton arm to wirelessly connect to a 

robotic arm, and then to have said robotic arm mimic the 

movements of the exoskeleton. Due to the need for a 

wireless connection, it was necessary to find a wireless 

communication standard that would best fit the needs of 

this project. After much research between many different 

standards (Wi-Fi, Bluetooth, Sub-Ghz, etc.) it was found 

that Bluetooth would be the communication standard that 

most aligns with the project’s needs. The reason for 

choosing Bluetooth was due to the ease of 

implementation, the low cost, and the speed that 

Bluetooth provides.  

The Bluetooth device that is being used is the HC-05 

and HC-06 Bluetooth modules. The reason for the two 

different parts is due to the way how these Bluetooth 

modules work. In order for the modules to connect and 

then begin sending data over wirelessly, it needs to be set 

up in a way that there is both a Slave module and a 

Master module. The HC-06 is the slave and the HC-05 is 

the master. The master module is attached to the robotic 

arm, waiting to receive the data being sent from the slave 

module (which is attached to the exoskeleton), and then 

the data that was received will be processed by the 

microcontroller and then delivered to the required motors 

in order to move the arm.  

Now for the code that operates the communication 

system for A Helping Hand. From what was stated 

previously, the master module is on the robotic arm and 

the slave module is attached to the exoskeleton, because 

of this the slave module will be the one that will be 

receiving all the measured data from the user’s inputs and 

then transmitting that to the master module so that data 

can be processed and then used for the robotic arm to 

mimic. In order to do this, an integer array was 

constructed to host all of the user’s inputted movement; 

however, this did not work during the initial test runs. 

The reason for it not working was found to be caused by 

the way that the Bluetooth modules were transmitting the 

data. The HC-05 and the HC-06 transmits data as a single 

byte, a byte is composed of 8 bits, and with only 8 bits to 

work with the largest number that was being transmitted 

was 255. This was unacceptable due to how it will impact 

accuracy (the potentiometers can go up to 1024 

resolutions, thus there would be a 75% drop in resolution, 

the encoders can go up to 4000 resolutions which would 

be a massive 93.75% drop in total accuracy).  

The solution to this problem was to find a way to 

transmit the recorded integer values (an integer is 2 bytes) 

in a form of two separate bytes. The first step was to 

create a byte array that would have a buffer size that is 

twice the size of all recorded integer values. After the 

creation of this byte array, what was then needed was to 

find a way to break down the integer values into 2 bytes 

each. Thankfully, Arduino has a command that can 

capture the first 8 bits (which are consider the high 

bits/byte) and the lower 8 bits (which are consider the low 

bits/byte). After capturing both the high and low bytes, 

both bytes would be recorded in numerical order within 

the byte array. This byte array would then be transmitted 

from the slave module to the master module for 

processing.  

Once the byte array was transferred from the slave 

module to the master module, it was time to decrypt the 

byte array into an actual integer value. The equation used 

in order to recreate the original integer value is (1) 

 

int value = highByte*256+lowByte.     (1) 

 

The reason behind multiplying the high byte by 256 is 

to tell the microprocessor that the first byte is to be 

shifted to the left by 8 bits which would then allow the 

high byte to actually represent its intended value. After 

adding both the high and low bytes together, the sum will 

be equivalent to the original recorded value. Once all the 

integer values have been recalculated, the master will 

then take these calculated values and send it to all of the 

servos, which will then cause the robotic arm to move. 

This process has a visual representation found in Fig 8. 



 

 

Fig. 8      Communication Block Diagram 

V. POWER PROCESSING SYSTEM 

Powering all of our electronics is essential for this 

project to work. This project requires a reliable power 

source that provides continuous power to supply the 

correct voltages and currents to the other system 

components. There are two aspects of power to this 

project, the power being provided and the power being 

processed, which is our power supply system. The power 

being provided is being supplied from a commercial 

power supply given to us by HP, which outputs 24VDC. 

Our power supply system can be broken into two 

sections: the low power exoskeleton and high power arm 

subsystems.  

 

A. Exoskeleton Subsystem 

 

The Exoskeleton power processing subsystem will 

provide continuous power to the exoskeleton components, 

which include the microcontrollers receiving sensory 

data, the encoders recording arm movement, the 

potentiometers recording finger movement, the gyro 

recording wrist movement, and Bluetooth module 

providing information via the microcontrollers to the Arm 

subsystem. Of the aforementioned subsystem 

components, all will be provided 5V power, with the gyro 

being the exception, which will be provided 3.3V. The 

total current carried by this subsystem will be less than 

100mA, making this subsystem under 0.5W.  

The Exoskeleton power subsystem will accomplish its 

goal using DC to DC linear regulators due to their 

simplicity to design. To efficiently provide power, and to 

reduce strain on components, three DC to DC regulators 

will be used. Instead of dropping the voltage from the 

given power supply to the voltage needed, the power will 

be distributed in stage to efficiently provide power. One 

DC to DC regulator to drop the voltage from the given 

24V to 12V (strain relief stage), another to drop the 

voltage from 12V to 5V (5V output), and a third to drop 

the voltage from 5V to 3.3V (3.3V output). Fig. 9 shows 

the schematic for the exoskeleton power subsystem. 

 

 

Fig. 9  Exoskeleton Power Schematic 

 

Due to the nature of the exoskeleton being worn by a 

human user, all electronics needs to be compact and small 

enough to wear without putting a burden on the user. 

Designing and creating a Printed Circuit Board (PCB) is 

of critical importance as it allows an easy and light 

solution not having a breadboard be configured onto the 

exoskeleton, which compared to a PCB would be bulky 

and troublesome. One of the PCBs for the exoskeleton 

was created to house the power processing circuits, which 

is shown in Fig. 10. Vias were put in place around the 

perimeter of the board and one in the center of the board 

as the board does not use the bottom layer for signal 

tracing. This allows the bottom layer to be used solely as 

a ground plane for assistance in heat dissipation of the 

components, as linear DC to DC regulators can heat up 

easily.  



 

Fig. 10  Exoskeleton Power PCB 

 

B. Arm Subsystem 

 

The Arm power processing subsystem will provide 

continuous power the arm components, which will 

include the microcontrollers that are controlling the arm’s 

movements via information received via Bluetooth, the 

Bluetooth module receiving information from the 

exoskeleton, and the fingers of the mechanical hand. Of 

the aforementioned components, the Bluetooth module 

and the microcontrollers will be fed 5V from the power 

supply at approximately 50mA, while the fingers will be 

fed 6V at approximately less than 1A each. The fingers 

are what classifies this subsystem as high power as the 

relative wattage of this subsystem is much higher than 

that of the exoskeleton approximately 30W.  

The Arm power subsystem will accomplish its goal of 

providing so much power to the mechanical fingers and 

mechanical control using DC to DC linear regulators due 

to their simplicity; unlike the exoskeleton, this subsystem 

needs to take heat dissipation into much higher 

consideration, which will be discussed further. Much like 

the exoskeleton, the power processing will be done in 

stages to provide less strain on the components, with one 

stage dropping the provided 24V from the given power 

supply to 12V. Another stage will be used to drop the 

voltage from 12V to 5V to provide power to the 

embedded hardware, while a parallel stage will be used 

for the fingers, dropping the voltage from 12V to 6V. Fig. 

11 shows the schematic for the arm power subsystem.  

 

 

Fig. 11  Arm Power Schematic 

 

When it comes to the design and creation of the PCB 

for the arm subsystem, heat dissipation is a heavy factor 

as servos with high loading requirements are being used. 

Providing 1A to each finger will prove to be a strain for 

the components which have to have the face the burden of 

the wattage being dissipation across it in the form of 

losses. To deal with this, large copper planes with the 

intent to help with heat dissipation were designed as per 

datasheet recommendations of each regulator used. These 

large power planes can be used when a heatsink is not 

ideal in the design process. Many thermal vias were 

created as well to assist in heat dissipation, as they help 

take the stress of the components by displacing the heat 

energy away from the component itself. Fig. 12 shows the 

PCB design for the Arm subsystem.  

 

Fig. 12  Arm Power PCB 

VI. SOFTWARE CONTROLS 

Much like other areas of the project, the software 

controls are essential for this project to work. The 

software controls for this project mirrors the processor 

architecture. This means like the processors, the software 

is broken up into multiple parts, with different software 

subsystems in both the exoskeleton and arm systems. For 

each microcontroller on each PCB there is a separate 

program that needs to run. The software controls 

architecture deals with all of the following: 

intercommunication between MCU’s, communication 

between arm and exoskeleton systems, motor controls for 

arm joints, and data manipulation for everything in 

between. 

 



A. Exoskeleton Subsystem 

 

 For the controls board for the exoskeleton there are 3 

processing microcontrollers. Two that deal with the 

encoders for the shoulder and elbow and one main MCU 

that handles all data inputs and then packages it up to be 

sent to the arm system. As mentioned in the processing 

section the reason for having an MCU dedicated to each 

encoder is due the fact that the MCU’s only have 2 

interrupt pins. These pins are needed as the MCU can’t 

keep up with encoder without them. There are two 

encoders on the exoskeleton hence the two MCU’s for 

them on the exoskeleton control board. The last MCU is 

the main MCU that takes in the digital gyroscopic data for 

the wrist and five analog potentiometer values for the 

fingers. It also receives data from the other two 

microcontrollers via I2C connections. For the 

interconnections of I2C, the main MCU is the Master as it 

receives the data from the two other MCU’s. The other 

two MCU’s are slaves to the main MCU.  It then 

packages up all of the data into a 14-byte array and sends 

the data through Bluetooth using the RX and TX pins. 

Fig. 13 below shows the flow of how the software works.  

 

 

 

Fig. 13 Exoskeleton Control Software Flowchart  

 

B. Arm Subsystem 

 

 Similar to the exoskeleton control board there are 

multiple MCU’s on the arm control board. And as stated 

before for each MCU there is different piece of software 

that needs to be run. In this system there are 5 MCU’s, 

one is the main MCU that receives the data from the 

exoskeleton system. The other 4 MCU’s are servo 

subsystems for each joint, these include: shoulder, elbow, 

forearm and wrist. Each servo subsystem has an MCU 

dedicated it for the same reason as the control board, the 

MCU can only handle one encoder. This is more relevant 

for the Arm board as the encoders will be moving much 

faster on the arm than on the exoskeleton as they are 

attached to actual motors.  

 Each servo subsystem follows the basic architecture: 

first it calibrates motor and starts the position at zero. It 

then runs a PID algorithm. This is the key function that 

allows the motor to work as a servo. As the motor is 

attached to an encoder, it is possible to keep track of 

position, and with the algorithm, the user can tell the 

motor to go to a specific position with a certain speed. 

The other key function is the receiving function, this is 

used to get data from the main MCU. Once the PID 

algorithm starts it gets the data from the receive function 

and receives a destination value it must go to. It then 

calculates the error between the desired position and 

current position, this error is then multiplied by a certain 

gain Kp. This value is then used to calculate a PWM and 

direction value that is sent to the motor controllers that 

are driving the motors. One parameter to note is the 

window of values for the speed of the motors which is 

represented with a PWM value. The PWM values of 0-

255 map to a speed of 0-100 percent for the motors. The 

motor controller takes the PWM value converts it to the 

speed percentage, and then outputs a corresponding 

voltage to the motor. The PWM window has been capped 

at 100 out of 255 due to the hardware limitations of the 

MCU. The interrupt pins can only be triggered so fast, so 

the speed is limited to allow for the MCU to keep up. To 

allow for the fastest response time, the values from the 

main MCU are sent to the servo subsystems every clock 

cycle.  

 Another item of concern is the resolution of the 

encoders and keeping this as high as possible throughout 

the entire architecture. To meet this requirement, the 

encoder value from the exoskeleton stays the same until it 

gets to the servo subsystem. Once it gets to this point, it is 

mapped with the values of -4000 to 4000 to -360 to 360 

degrees. This is then mapped to the arm position, by using 

parameters for the motor. The motors are geared 100 to 1, 

this means for every revolution of each motor the joint of 

the arm moves 3.6 degrees. For instance, if the 

exoskeleton moves to 90 degrees or position 1000 for the 

encoder. The arm side would take the value of 90 and 

divide by 3.6 yielding the value of 25. This value is 



multiplied by 4000, one full revolution of the encoder to 

get to the value of 100,000 steps. The PID algorithm then 

sends the joint to this value yielding a position of 90 

degrees.   

 Similar to the exoskeleton architecture for I2C. The 

main MCU is the Master, and all of the other MCU’s are 

the slaves. The main MCU receives the data from the 

Bluetooth device through serial, it decodes the data 

package, then sends out the position to each joint. This 

also includes the hand, which is controlled by a different 

function but is also within the main MCU. 

 

Fig. 14  Arm Control Software Flowchart 

VII. CONCLUSION 

As one can see the telerobotic arm system couldn’t be 

realized without the all the aforementioned components 

discussed in this paper. The mechanical hardware, 

processing, communications, power systems, and 

software controls are integral parts to the project. The 

exoskeleton captures the user’s motion through sensors, 

which is then sent to the robotic arm subsystem. The 

architecture was completely designed by the authors of 

the team. Through the knowledge gained from classes and 

internships the team was able meet the goals and 

requirement that were set by Hewlett Packard. 
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